
The Delphi
CLINIC

Edited by Bob Swart
Bring your problems to our panel of experts!

If there’s something puzzling you about an
aspect of Delphi, just email the Delphi Clinic

Editor, Bob Swart, at Compuserve 100434,2072
or write or fax us at The Delphi Magazine

QWell I’ve seen some strange
antics in library code in my

time, but this one takes the cookie.
Please explain the programming
methodology behind this in file
CONTROLS.PAS:

procedure Hack;
var
 W: array[0..$7F] of Byte;
 I: Integer;
begin
 for I := 0 to $7F do
 W[I] := I;
end;

called only once in the same file
just below the declaration of Hack
as shown in Listing 1.

AThat loop code is required to
activate a poorly docu-

mented and understood feature of
Windows: that Windows standard
controls will paint into a DC that
you provide, instead of doing their
own BeginPaint/EndPaint cycles.
However, for at least one standard
Windows control, a zone of down-
stream stack must be initialised in
a certain way before the trick will
work.

This trick enables us to print
entire forms to a printer DC, includ-
ing buttons and such that do their
own painting. This technique is
used by several Microsoft prod-
ucts, so we can feel reasonably safe
in using it ourselves...
[Answer by Danny Thorpe]

QMy menu shortcut keys
don’t seem to work

correctly, can you help?

AThere appears to be a bug in
the VCL source file

MENUS.PAS. Listing 2 shows the
original procedure ShortCutToKey

from the Menus unit and also how it
should look.
[Answer by Michael Williams]

QHow do I navigate through
my numerous forms?

AApart from using the Form
list, there is another way. If

you’ve got a form open, pressing
the F12 function key puts you in the
code editor with that form’s code
loaded. Pressing F12 in the code
editor then takes you to the form
corresponding to that code. So the
editor can serve as a navigation aid
for getting bewteen forms. I use it
that way a lot!
[Answer by Neil Rubenking]

QWhen I’m building a DLL,
why does Delphi insist on

having a uses clause in my source
file, even though I don’t want to
‘use’ any units?

AIf your DLL source file does
not have a uses clause some-

where (in either the main part in
case of a program or library, or in
the interface or implementation
section of a unit), Delphi will give
you an error message: Error in
module X: USES clause is missing
or incorrect. However, if you just
click OK, you can continue to work
with, edit and compile this ‘bad’ file
with no problem. I guess the ‘error’
should be made a ‘warning’ (or be
removed completely).

procedure TWinControl.DefaultHandler(var Message);
begin
 if FHandle <> 0 then with TMessage(Message) do begin
 if (Msg = WM_PAINT) and (WParam <> 0) then Hack;
 Result := CallWindowProc(FDefWndProc, FHandle, Msg, WParam, LParam);
 end else
 inherited DefaultHandler(Message);
end;

➤ Listing 1

{** ORIGINAL VERSION: }

procedure ShortCutToKey(ShortCut: TShortCut; var Key: Word;
 var Shift: TShiftState);
begin
 Key := Key and not (scShift + scCtrl + scAlt);
 Shift := [];
 if Key and scShift <> 0 then Include(Shift, ssShift);
 if Key and scCtrl <> 0 then Include(Shift, ssCtrl);
 if Key and scAlt <> 0 then Include(Shift, ssAlt);
end;

{** THIS IS HOW IT SHOULD READ: }

procedure ShortCutToKey(ShortCut: TShortCut; var Key: Word;
 var Shift: TShiftState);
begin
 Key := ShortCut and not (scShift + scCtrl + scAlt);
 Shift := [];
 if ShortCut and scShift <> 0 then Include(Shift, ssShift);
 if ShortCut and scCtrl <> 0 then Include(Shift, ssCtrl);
 if ShortCut and scAlt <> 0 then Include(Shift, ssAlt);
end;

➤ Listing 2

September 1995 The Delphi Magazine 43

procedure TForm1.Button1Click(Sender: TObject);
var LoopX, LoopY: Word;
begin
 { save typing this all the time }
 with Image1.Picture do
 { Canvas property is only in bitmaps }
 if Graphic is TBitmap then
 with Graphic as TBitmap do
 { invert all pixels a column at a time }
 for LoopX := 0 to Pred(Width) do begin
 for LoopY := 0 to Pred(Height) do begin
 Canvas.Pixels[LoopX, LoopY] :=
 clWhite - Canvas.Pixels[LoopX, LoopY];
 end;
 { standard technique to stop flickering on VGA }
 while Port[$3DA] and 8 = 0 do;
 { be multi-user friendly - yield after each column }
 Application.ProcessMessages;
 { also let user terminate app }
 if Application.Terminated then Break;
 end;
end;

➤ Listing 3

QWhy can’t I debug my
ObjectPascal DLL? The

integrated debugger is unable to
debug it, while Turbo Debugger 3.2
(from Borland Pascal) reports an
incorrect linker version.

AFirst of all, you do need the
stand-alone debugger in

order to debug DLLs. Secondly,
you need the new Turbo Debugger
4.6, which ships as part of the
Delphi RAD Pack, or with Turbo
Assembler 4.0, or in the Borland
C++ 4.51 update. Personally, I’d go
for the RAD Pack!

QHow do I make my Delphi
application’s window stay

on top of the other windows which
are open?

ALook at the fsStayOnTop
setting of the TForm property

FormStyle. This will cause the
window to always stay on top of
whatever other windows are open.
However, when you minimize the
window to an icon, it no longer
stays on top like, for example, the
Clock application that ships with
Windows itself. Since an icon is not
a form, this does not sound that
strange, but if anyone has a clue
how to fix this, we would be very
interested in hearing about it!

QI would like help on image
handling in Delphi. I

currently use the ImageKnife VBX
and it works fine(ish), but I would
prefer to do it all without a VBX.
The sort of functionality I need is to
load and save bitmaps, show them
on the screen and get direct pixel
access to the actual pixel data. The
Delphi TImage component does
most of this, but how do I directly
access the image data?

AIf you have a TImage compo-
nent, you can get to its pixel

data by using the Pixels property
of the bitmap’s Canvas, eg if you
have a component Image1 on a form
with a picture in it, say the file
C:\IMAGES\MYPIC.BMP, and a button
called Button1 you can use the code
shown in Listing 3.

Also, the equivalent of reading
and writing Pixels[x,y] is:

dc := (image1.picture.graphic
 as tbitmap).canvas.handle;
col := GetPixel(dc, x, y);
SetPixel(dc, x, y, col);

[Answer by Brian Long]

Whoops...
And now for the apologies! Thanks
to Brian Long for pointing out a
couple of goofs in Issue 2’s Delphi
Clinic column.

First, a reader wanted his appli-
cation to first of all show a login
dialog and then, if the login was not
accepted, to close the application
without the app’s main form being
displayed. The answer contained
the elements of what was needed,
but wasn’t too well explained. The
code to handle this situation needs
to go in the FormCreate method for
the main form, which handles the
OnCreate event for the form. The
reader had found that testing the
result of the dialog and then using
Close did not have the desired
effect. The key is to use a call to
Application.Terminate instead:

procedure TFormMain.FormCreate(
 ...)
var
 LoginForm : TUserLogin;
begin
 Application.CreateForm(
 TUserLogin, LoginForm);
 if LoginForm.ShowModal =
 mrCancel then begin
 LoginForm.Free;
 Application.Terminate;
 end;
end {FormCreate};

This should do the trick: the call to
Terminate will kill the program
before the main form is displayed.

Secondly, a reader queried how
to “shell” out from a Delphi
application and call another
executable and then return to the
Delphi application once the user
had exited the “shelled” program.
The code given in Listing 3 (from
Issue 2) was incorrect. Brian
suggests the code in Listing 4 (this
issue!) as a replacement.

[Editor’s note to Dr.Bob’s boss – Hey,
this guy needs a holiday, you’re
working him too hard!]

var InstID: THandle;
begin
 InstID := WinEXec(CmdLine, CmdShow);
 Result := InstID >= hInstance_Error;
 if Result then
 repeat
 Application.ProcesssMessages;
 until (GetModuleUsage(InstID) = 0) or Application.Terminated;
end;

➤ Listing 4

44 The Delphi Magazine Issue 3

